Riverdale Well Samples

French Ltd. Project

	(b) (6) A	.ddress = >	(b) (6)							
	Detect. Limit	Federal DW*	5/11/94	5/24/94	5/11/94	5/24/94	5/11/94	5/11/94	5/11/94	5/11/94
	5-11 sample	Standard	RD-1	RD-1	RD-2	RD-2	RD-3	RD-4	RD-5	RD-6
Chloromethane	2		ND							
Bromomethane	2		ND							
Vinyl chloride	2	^2	ND	ND	7	· 8	ND	ND	ND	ND
Chloroethane	2	^10	ND							
Methylene Chloride	1	5	ND							
Acetone	2	^3500	ND							
Carbon disulfide	1	^3500	ND							
1,1-Dichloroethene	1	7	ND							
1,1-Dichloroethane] 1	⁻ 5	ND							
1,2-Dichlorocthene(Total)	1	70	ND	ND	2	ND	ND	ND	ND	ND
Chloroform	1	100	ND							
1,2-Dichloroethane	1	5	ND	ND	1	ND	ND	ND	ND	ND
2-Butanone	2	1700	ND							
1,1,1-Trichloroethane	1	^200	ND							
Carbon Tetrachloride	1	5	ND							
Vinyl acetate	2	^35000	ND							
Bromodichloromethane	1		ND							
1,2-Dichloropropane] 1	^5	ND							
cis-1,3-Dichloropropene	1	^5	ND							
Trichloroethene	1	5	ND							
Dibromochloromethane	1		ND							
1,1,2-Trichloroethane	1	5	ND							
Benzene	1	5	ND							
trans-1,3-Dichloropropene] 1		ND							
2-Chloroethylvinyl ether	2		ND							
Bromoform	1		ND							
4-Methyl-2-pentanone	2	^1700	ND							
2-Hexanone	2	^5	ND							
Tetrachioroethene	1	^5	ND							
1,1,2,2-Tetrachloroethane	1	^2	ND							
Toluene	1	1000	ND							
Chlorobenzene	1	⁻ 700	ND							
Ethylbenzene	1	700	ND							
Styrene	1	^100	ND							
Xylene (total)	1	10000	ND							

Values in ug/L

EVERY

quartul

^{* =} Fed DW Std except where denoted by "" symbol it is FLTG GW cleanup criteria

French Ltd. Project FLTG, Incorporated

Sample 1: T-1	01 Influent						
Lab =>	Chester	Chester	NDRC	NWDL	AATS	AATS	ATI
Method =>	ICP	Furnace	ICP	Fim/Furn	Tr ICP	ICP	
Copper	<9	<2	'<10	<5	51	49	<5
Silver	<6	<0.2	<10	6	66	5	< 0.5

Sample 2: R-	1 Effluent						
Lab => Method =>	Chester ICP	Chester Furnace	NDRC ICP	NWDL Flm/Furn	AATS Tr ICP	AATS ICP	ATI
Copper	<9	<2	<10	10	81	77	<5
Silver	<6	0.3	<10	<5	3	6	< 0.5

Sample 3: Sar	n Jac Discha	arge					
Lab =>	Chester	Chester	NDRC	NWDL	AATS	AATS	ATI
Method =>	ICP	Furnace	ICP	Flm/Furn	Tr ICP	iCP	
Copper	<9	<2	<10	<5	61	58	<5
Silver	<6	<0.2	<10	<5	5	6	< 0.5

Sample 4: 0	Cell F Liquor						
Lab =>	Chester	Chester	NDRC	NWDL	AATS	AATS	ATI
Method =>	ICP	Furnace	ICP	Flm/Furn	Tr ICP	ICP	
Copper	49	44	84	56	130	139	32
Silver	<6	0.6	15	16	19	3	< 0.5